
The Structure of a GCC Front End

Gustavo Sverzut Barbieri Rafael Ávila de Esṕındola

April 21th, 2006

1 Introduction

2 General Structure of a Front End

3 General Structure of GCC

4 The GCC ILs

5 The Front End Interface

6 Further Information

7 Contact

Introduction

Languages and TargetsLanguages and TargetsLanguages and Targets

To compile C, Java, and Fortran to x86, amd64, powerpc we would
need 9 compilers!

Fortran

Java

C x86

amd64

powerpc

Introduction

Intermediate LanguagesIntermediate LanguagesIntermediate Languages

Using a common intermediate language:

Fortran

Java

C x86

amd64

powerpc

IL IL

platform
independent
optimizations

Only 6 translators are needed.

Introduction

NomenclatureNomenclatureNomenclature

The language to IL translators are called front ends

The IL to assembly translators are called back ends

The IL → IL passes are called the middle end

Most optimizations can be implemented on middle end level
and are language and target independent

Introduction

Compiler Layers — The Big PictureCompiler Layers — The Big PictureCompiler Layers — The Big Picture

Fortran

Java

C x86

amd64

powerpc

IL IL

platform
independent
optimizations

front end back endmiddle end

Introduction

Front end exampleFront end exampleFront end example

i = 0

body
i = i + 1

for (i = 0; i < 6; i++)
 {
 body
 }

C

for i := 0 to 5 do
begin
 body
end

Pascal

if (i < 6)

Introduction

Middle end exampleMiddle end exampleMiddle end example

loop invariant
optimization

if (...)

a = 5
f(x,y,a)

f(x,y,a)

if (...)

a = 5

Introduction

Back end exampleBack end exampleBack end example

a = b + c

movl %ebx, %eax
addl %ecx, %eax

add r0, r1, r2

arm

x86

General Structure of a Front End

A front end usually has

A lexer

A parser

An abstract syntax tree

Type checking

A converter for the syntax tree to the compiler IL

Some front ends may not have some of them

General Structure of GCC

There is a compiler and a driver for each language

The compiler just translates the source to assembly

The driver calls the compiler, the assembler and the linker

Drivers: gcc, gcj

Compilers: cc1, jc1

Each compiler lives in a directory of the gcc directory

gcc/cp: the c++ front end
gcc/java: the java front end

The GCC ILs

Intermediate LanguagesIntermediate LanguagesIntermediate Languages

GENERIC Very high level. Generated by most front ends

GIMPLE A simplified GENERIC in Static Single Assignment
(SSA) form

RTL Register Transfer Language. A low level
representation used in the back ends

GENERIC and GIMPLE use the same data structure

The difference is in which constructs are allowed

The GCC ILs

GCC Intermediate Language RelationshipGCC Intermediate Language RelationshipGCC Intermediate Language Relationship

GENERIC GIMPLE RTL

x86

amd64

powerpcFortran

Java

C

The GCC ILs

GCC Data Structure: TreeGCC Data Structure: TreeGCC Data Structure: Tree

The data structure used for GENERIC and GIMPLE is called
tree

It is a gigantic union. Each instance can be a variable, a
function, a statement, etc

It is called tree because of how the representation looks like:

init coditional increment body

for

expr1 expr2
......... ...

......

The GCC ILs

Building TreesBuilding TreesBuilding Trees

The front end has to

understand the source language

build the trees

For building trees there are many helper functions

build fn decl(name, type)

build string(len, size)

build pointer type(type)

build function call expr(function, args)

The Front End Interface

CallbacksCallbacksCallbacks

GCC controls most of the compiler behavior

Provides the main function

Parses options

Handle language independent options

The Front End

Provides callbacks for

Initialization
Parsing a file
Processing a language specific option
Many others

The Front End Interface

The cgraph ModuleThe cgraph ModuleThe cgraph Module

The front end interface is managed by the cgraph module

Each constructed function is transferred with
cgraph finalize function

To finish the compile unit call
cgraph finalize compilation unit

To finish the job call cgraph optimize

cgraph may compile one function at a time or accumulate

The Front End Interface

Call GraphCall GraphCall Graph

cgraph_finalize_function

hello_init

hello_parse_file

tree_rest_of_compilation

cgraph_optimize

hello_expand_function

cgraph_finalize_compilation_unit

Further Information

Further InformationFurther InformationFurther Information

The Hello World front end: http:
//svn.gna.org/viewcvs/gsc/branches/hello-world/

GCC Scheme Compiler (GSC):
http://gna.org/projects/gsc

GCC TreeLang: /trunk/gcc/treelang

info gcc

http://svn.gna.org/viewcvs/gsc/branches/hello-world/
http://svn.gna.org/viewcvs/gsc/branches/hello-world/
http://gna.org/projects/gsc

Contact

ContactContactContact

Gustavo Sverzut Barbieri

Email: gustavo.barbieri@indt.org.br
Website: http://www.gustavobarbieri.com.br

ICQ: 17249123
MSN, Jabber: barbieri@gmail.com

Rafael Ávila de Esṕındola

Email: rafael.espindola@indt.org.br
Jabber: rafael.espindola@jabber.org

mailto:gustavo.barbieri@indt.org.br
http://www.gustavobarbieri.com.br
mailto:rafael.espindola@indt.org.br

	Introduction
	General Structure of a Front End
	General Structure of GCC
	The GCC ILs
	The Front End Interface
	Further Information
	Contact

