
we’rehere.

event-oriented programming

UNICAMP — April 22, 2009

Gustavo Sverzut Barbieri <barbieri@profusion.mobi>



agenda

- introduction

- main loop

- unix: fds and poll/select

- hands on: gui



introduction



event-oriented programming

- reactive

- sleeps most of the time

- work is usually short/quick

- lives forever (until requested to quit)



solvable problems

- hardware (sensors) events

- user interface

- client/servers

- ... basically every non-batch!



using multiple threads

- one thread per resource (client, sensor...)

- common resources needs locking

- underlying libraries must cooperate

- operating system segments load for you



using single thread

- one thread to rule them all

- no need to lock resources

- no special needs on underlying libraries

- need to segment load for you



single versus multiple threads: rule

general rule:

multiple is just good when work load is hard to
segment.

for everything else use single thread instead



multiple threads: examples

- non-snapshotable calculations

- blocking calls (includes syscalls)

sending static files in webserver can be done with
sendfile(), it’s better to run this from threads!



single thread: examples

- graphical user applications

- handling non-thread safe dbs (sqlite)

- non-blocking calls (includes syscalls)

interacting with various web2.0 services (soap/xmlrpc) is
much easier from single threads!



using both single and multiple threads

they are not exclusive concepts!

single thread based application can start threads to
do some work, then communicate to the “main” thread
using standard communication primitives.

multiple threads based application can run single
thread sub case in one of its threads.

always pay attention to resource sharing!



cooperative threads

- used on single thread applications

- segments work load

- share concepts with distributed computing
- handled as a pair (function, context)

- function: what to execute, depends on context
- context: state information, data, etc

- also implemented as coroutines



cooperative threads: gui-db example (1/2)

traditional non-cooperative (blocking) example:

function load(gui, query):
while not query.is_last():

row = query.next_row()
gui.append(row)

blocks for a period dependent on number of elements



cooperative threads: gui-db example (2/2)

cooperative example:

function load(gui, query):
if query.is_last():

return stop
row = query.next_row()
gui.append(row)
return continue

still blocks! but constant time independent on number of
elements



cooperative threads: net-calcs example (1/2)

function calc(start, end, client):
result = 0
for i from start to end:

result += part_calc(i)
client.send(result)



cooperative threads: net-calcs example (2/2)

function calc(ctx, client):
last = ctx.base + ctx.step
if last > ctx.end:

last = ctx.end
for i from ctx.base to last:

ctx.result += part_calc(i)
if last == ctx.end:

client.send(ctx.result)
return stop

ctx.base = last + 1
return continue



main loop



main loop: simplified

while (1) {
wait();
process();

}



main loop sequence



main loop: more real

while (1) {
maxtime = first_expire();
timeout = wait(maxtime);
if (timeout && timers)

process_timers();
if (!timeout)

process();
}
does not enable cooperative threads!



main loop sequence with timers



main loop: likely real

while (1) {
maxtime = first_expire();
timeout = wait(maxtime);
if (timeout && timers)

process_timers();
if (!timeout)

process();
process_idlers();

}

does enable cooperative threads!



main loop sequence with timers



unix: file descriptors and poll/select



file descriptors

- originally abstract key for accessing a file

- expanded to cover sockets, directories, fifos...

- fancy and low level controls (ioctl, fcntl...)
- some can be mapped to process memory (mmap)
- can be read, written ... and monitored!



things that are file descriptors

- files
- directories

- character devices (modem)

- block devices (disk)

- network sockets (ip, tcp, udp, bluetooth...)

- fifos (named pipes)

- pipes
- even timers (timerfd())
- and general events! (eventfd())



monitoring file descriptors

- can I read from it without blocking?

- can I write to it without blocking?

- did errors occurred? (connection closed, ...)

note: read/write operations refer to basic units, usually
a byte! doing more than that can still block if file
descriptor is in blocking operation.



monitoring file descriptor the unix way

family of functions to monitor set of file descriptors for
action or return on timeout:

- select(), original call to monitor file descriptors,
painful to use. Uses bitmask and thus has fixed
size/limit on number of file descriptors.

- poll() easy to use call, uses an array so no
imposed limit.

- epoll_wait() new call to allow higher level of
control (edge or level triggered events).



real world file descriptor usage: httpd

browse the web is all about file descriptors:

- servers (apache) creates one socket and
select()

- when ready servers accept()
- accept() returns direct fd to client

- clients (browsers) connect() using sockets

- servers use other fds to read from files

- clients use other fds to cache to files

httpds usually mix threads and fork to handle clients after
accept(), some use select().



real world file descriptor usage: dbus

the external music player panel that lives on desktop to
control amarok/rhythmbox:

- dbus daemon create a unix socket and select()
- music player connect() and registers a name

- music player toolkit (qt/gtk...) select()
- panel connect() and asks for music player

- panel toolkit select()
- music player signals are caught on panel’s
select()

- panel calls are caught on music player’s select()
- toolkits process dbus and dispatch user calls



real world file descriptor usage: gui/x11

x11 is a client-server system. server is the one that
connect to devices like vga, keyboard and mouse.
client is usually the application.

- server open devices (vga, keyboard, mouse)

- server will create unix/tcp sockets

- server select()
- client connect() to server

- server wakes from select() on mouse and
write() to client

- client wakes from select() and updates,
write() to server



conclusion



conclusion

- event oriented programming is used a lot

- easy to integrate using main loop

- main loops can save you from thread hell

- need to take care when segmenting load

- poor segmented loads can make it sluggish



hands on: gui development



hands on analysis

strace: tool to trace system calls and signals.



we’rehere.

thanks!

Gustavo Sverzut Barbieri

barbieri@profusion.mobi
http://blog.gustavobarbieri.com.br/

http://profusion.mobi/

mailto:barbieri@profusion.mobi
http://blog.gustavobarbieri.com.br/
http://profusion.mobi/

	Agenda
	Introduction
	Main Loop
	UNIX: fds and poll/select
	Conclusion
	Hands On: GUI
	The End

