
to develop software for CE product

on low-end hardware

LinuxCon Brasil

São Paulo

Gustavo Sverzut Barbieri

Tips and Tricks

- developer since 1991

- unicamp - computer engineering 2001-2005

- freevo - python media center 2003

- indt - embedded software 2006-2008

- profusion embedded systems - since 2008

- efl, python, ffmpeg, mplayer, systemd...

about meabout me

ce productsce products

- consumer electronics

- high volume - every cent counts

- well defined purpose

- target audience

ce productsce products

consumer expectations - beforeconsumer expectations - before

- raises the bar

- ease of use hits mass market

- ipod click wheel

 . technical point-of-view: suboptimal

 . commercial point-of-view: expensive

 . users point-of-view: awesome!

- itunes - optimize and organize - EASY!

- music store: easy to get legal media

consumer expectations - ipod (2001)consumer expectations - ipod (2001)

- raises the bar, again

- introduces (mass market):

 . capacitive/glass touchscreen

 . highly responsive operating system

 . central application store and updates

 . easy mobile internet

- purpose not so well defined anymore

- impacts EVERY market: cars, planes, refrigerators...

consumer expectations - iphone (2007)consumer expectations - iphone (2007)

- the best software architecture

- the most beautiful code

- the best algorithm

- scalable (screens, cores, ...)

- modular

- reusable

developers expectationsdevelopers expectations

- non-rectangular paths and shapes

- transparency, blur and other filters

- fluid animations

- ~~change design at any project stage~~

- ~~if illustrator/flash does, ce does as well~~

graphical designer expectationsgraphical designer expectations

- developers and users differ widely

- designers and users tend to converge

- ... developers shouldn't design a product

- ... but designers are unrealistic

expectations summaryexpectations summary

- developers: fast feels fast

- designers: make everything themable

- users: effects are nice per-se, (ab)use them

mythsmyths

- general:

 . always focus on the user

 . define your target audience

 . define the product purpose

- technical:

 . be responsive

 . never block

 . allow cancellation

 . avoid work

solutionssolutions

- provide user feedback as quickly as possible

- ... graphics, sound, vibration

- good even if technically useless

- amiga: coprocessors

- windows: high priority mouse interruption

- touchscreens with click sound

be responsivebe responsive

- cooperative tasks (idlers)

- threads

- processes

never blocknever block

- cooperative tasks that preempt themselves

- best option for easy-to-segment tasks

- needs predictable task duration

- needs no locking, no race conditions

- not multi-core friendly

- easy to cancel

- integrates fine into main loops

- easy to update user interface

never block - cooperativenever block - cooperative

never block - cooperativenever block - cooperative

 struct ctx {

 unsigned int current, end, step;

 double value;

 double *input;

 };

 bool sum_pow5(struct ctx *ctx) {

 unsigned int last = ctx->current + ctx->step;

 if (last > ctx->end)

 last = ctx->end;

 for (; ctx->current < last; ctx->current++)

 ctx->value += pow(ctx->input[ctx->current], 5);

 return ctx->current < ctx->end;

 }

never block - cooperativenever block - cooperative

 int main(int argc, char *argv[]) {

 // code...

 while (run) {

 do_something();

 if (needs_sum_pow5) {

 if (!sum_pow5(ctx)) {

 needs_sum_pow5 = false;

 printf("sum_pow5=%f\n", ctx->value);

 }

 }

 // code...

- task is preempted by kernel

- best option for hard-to-segment tasks

- good for unpredictable task duration

- good for blocking syscalls, hardware access

- may need locking, may have race conditions

- multi-core friendly

- harder to cancel

- harder to update user interface (qt, gtk, efl...)

never block - threadsnever block - threads

never block - threadsnever block - threads

 struct ctx {

 unsigned int count;

 double *input;

 enum { NEED, DOING, DONE, END } stage;

 };

 int cmp(const void *p1, const void *p2) {

 double *a = p1, *b = p2;

 return (int)(*a - *b);

 }

 void *th_sort(void *data) {

 struct ctx *ctx = data;

 qsort(ctx->input, ctx->count, sizeof(double), cmp);

 ctx->stage = DONE;

 return NULL;

 }

never block - threadsnever block - threads

 int main(int argc, char *argv[]) {

 // code...

 while (run) {

 do_something();

 if (ctx->stage == NEED) {

 ctx->stage = DOING;

 pthread_create(&th, NULL, th_sort, ctx);

 } else if (ctx->stage == DONE) {

 pthread_join(&th);

 ctx->stage = DID;

 puts("thread sorted!");

 }

 // code...

- similar to thread

- usually for heavy-weight long running

- good for problem-prone (NFS, uninterpretable)

- different memory space - killable

- more robust

- harder to communicate - ipc/shmem

- harder to update user interface

never block - processesnever block - processes

- if possible stop the task

- otherwise ignore its results

- rollback changes

- avoid partial work (leftovers)

- NEVER EVER pthread_cancel()

allow cancellationallow cancellation

- cache and pre-calculate

- offload (coprocessors or servers)

- optimizations (graphics)

avoid workavoid work

- excellent for "pure" operations

- define allowed cache size (no leaks!)

- define invalidation policy (no stales!)

- optimize lookup (must be worth!)

avoid work - cacheavoid work - cache

- binary, validated and optimized files

- native objects retrieved from database

- decoded images, sounds and fonts

avoid work - cache examplesavoid work - cache examples

- use hw acceleration (audio, video, graphics)

- delegate work to remote servers

 . map routing

 . voice recognition (siri)

 . mail index and searching (gmail)

avoid work - offloadavoid work - offload

- use specific painting operations

- do retained rendering

- employ occlusion

avoid work - graphicsavoid work - graphics

- solid opaque fill

pixel_color = color;

- image blend with color and transparency

alpha2 = 255 - alpha1;

 pixel_color = (source1 * alpha1) / 255 +

 (((source2 * color) / 255) * alpha2) / 255;

- cost is very different!

- prefer use RGB565 (16bpp) or YUV

graphics - painting operationsgraphics - painting operations

graphics - retained renderinggraphics - retained rendering

1 2

3 4

The order of composition of
layers is important!

painting steps:layers:

screen

image
text

rectangle

TEXTTEXT

- objects are not rendered immediately

- state changes are remembered

- multiple changes != multiple rendering

- render phase will compute differences

- just visible changes should be used

- allows greater optimizations

- optimize how to know dirty regions

graphics - retained renderinggraphics - retained rendering

graphics - occlusiongraphics - occlusion

dirty areas

1a 1b

2a 2b

Areas marked as dirty need to be painted (with
background) to clean the image. REMEMBER:
 the ORDER MATTERS!

Occlusion
the area
doesn’t need
to be painted
blue.

- do not paint objects:

 . outside the viewport

 . under opaque regions

 . obscured/forbidden regions

- optimize how to find out occlusions

graphics - occlusiongraphics - occlusion

- avoid memory allocations!

- avoid memory fragmentation

- replace copies with references

- use proper data structures

- be cpu cache-line friendly

general optimizationsgeneral optimizations

- focused on performance and low memory

- heavily optimized since 2001 (current set)

- most interesting libs:

 . eina - data types

 . eet - binary data store and load

 . evas - 2d drawing canvas

 . edje - themes, animations and layouts

 . elemetary - widget set

efl - efl - enlightenment foundation librariesenlightenment foundation libraries

- always focus on the user

- define your target audience

- define the product purpose

- be responsive and never block

- do not just optimize, avoid working at all!

conclusionconclusion

questions?questions?

Obrigado!

Gustavo Sverzut Barbieri
<barbieri@profusion.mobi>

